

National 5 Physics

Resource Guide

February 2016

Physics National 5 Resource Guide

This resource guide has been produced in response to requests from staff who attended the NQ Sciences events at Hampden Stadium in December 2013. Those attending felt it would be useful to have a document which helped them navigate to the most relevant resources quickly.

The following pages show the mandatory course key areas table from the SQA Physics National 5 Course and Unit Support Notes. An additional fourth column has been included which contains hyperlinks to useful resources. Please note: Staff are not required to use the resources listed – they are only included as helpful suggestions. Staff should also refer to the SQA website for the most up-to-date course and unit support notes.

To further assist staff links to useful SQA documentation have been included at the beginning of each unit. The SQA documentation relating to the course is shown here.

Relevant SQA documentation

Course specification Course assessment specification Course and unit support notes (the original document which has been modified here) General assessment information Specimen examination paper and marking scheme Course Report 2015

Education Scotland learning materials

Links to educational websites, resources and guidance Past papers guidance

Web link

http://bit.ly/1pdvy4a http://bit.ly/1pCZshJ http://bit.ly/1dadovx http://bit.ly/PM2v8D http://bit.ly/1o2c2cn http://bit.ly/20qzyMj

http://bit.ly/1egJNP7 http://bit.ly/OywJLc

Electricity and Energy			Unit specification: <u>http://bit.ly/1nB4vzg</u>
Mandatory course key areas	Suggested learning activities	Exemplification of key areas	Useful resources
Conservation of energy Knowledge of the principle of 'conservation of energy' applied to examples where energy is transferred between stores. Identification and explanation of 'loss' of energy where energy is transferred. Use of an appropriate relationship to solve problems involving potential energy, mass, gravitational field strength and height. Use of an appropriate relationship to solve problems involving kinetic energy, mass and speed. Use of appropriate relationships to solve problems involving conservation of energy.	Investigate energy transfers and losses in the generation of electricity, motion down a hill, etc. using model car 'stunt sets'. Research other energy transfers in everyday objects such as solar panels. Discuss and explain why processes are not 100% efficient in terms of useful energy.	$E_p = mgh$ $E_k = \frac{1}{2}mv^2$	 Twig video clip – The energy of formula 1 Twig video clip – Energy transformation Twig video clip – Laws of thermodynamics PhET interactive simulation – Energy skate park BBC Learning Zone learner activity – Conversion of potential to kinetic energy and other forms of energy BBC Learning Zone video clip – Conversion between gravitational potential energy and kinetic energy BBC Knowledge and Learning learner notes – Conservation of energy BBC Knowledge and Learning quick test – Conservation of energy

Electrical charge carriers and			
electric fields			
Definition of electrical current as	Investigate the interaction of	Q = It	Twig video clip – What is electricity?
the electric charge transferred per unit time.	charged objects, for example, metallised polystyrene spheres attracted and		PhET <u>interactive activity</u> – Balloons and static electricity
Use of an appropriate relationship	repelled, Van de Graaff		
to solve problems involving charge, current and time.	generator discharged through a micro ammeter.		BBC GCSE Bitesize <u>animation</u> – Electrostatics
Knowledge of the difference	Discuss and research the		PhET interactive simulation – John
between alternating and direct current.	uses of electrostatics, for example: laser printers, paint		Travoltage
	spraying, cling film, forensic		PhET interactive simulation – Charges and
	science, removal of dust, electrostatic precipitators,		fields
	electrostatic separators.		BBC Knowledge and Learning learner
	Research the definition of		notes – Electric charge carriers and electric
	current and its historical		fields
	context.		BBC Knowledge and Learning quick test –
	Use an oscilloscope/data		Electric charge carriers and electric fields
	logging software to compare alternating and direct		Twig video clip – AC, DC and transformers
	sources.		Twig <u>video clip</u> – Static electricity

		BBC Knowledge and Learning <u>learner</u> <u>activity</u> – Mains supply and batteries
Potential difference (voltage) Awareness of the effect of an electric field on a charged particle. Knowledge that the potential difference (voltage) of the supply is a measure of the energy given to the charge carriers in a circuit.	Observe demonstrations of electric fields using Teltron tubes, olive oil and seeds with high tension supply, Van de Graaff generator, parallel plates and suspended pith ball. Use computer simulations to investigate the behaviour of charges in an electric field. Carry out practical investigations to measure potential differences across components in series circuits. Describe the energy transfers and show that although there is a transfer of energy in the circuit the law of conservation of energy still applies.	Twig <u>video clip</u> – FactPack: How to draw a circuit Colorado Physics <u>learner resources</u> – The electric force PhET <u>interactive simulation</u> – Electric field hockey

Ohm's law Use of a V-I graph to determine resistance. Use an appropriate relationship to solve problems involving potential difference (voltage), current and resistance. Knowledge of the qualitative relationship between the temperature and the resistance of a conductor.	Carry out a range of practical investigations to determine the relationship between potential difference, current and resistance using simple ohmic components. Carry out practical investigations with non-ohmic conductors, for example, a ray-box lamp.	V = IR	Twig <u>video clip</u> – Resistance PhET <u>interactive simulation</u> – Ohm's law SSERC <u>staff resources</u> – Resistance versus temperature BBC Knowledge and Learning <u>learner</u> <u>activity</u> – Ohm's law and resistance BBC Knowledge and Learning <u>quick test</u> – Ohm's law and resistance
Practical electrical and electronic circuits Measurement of current, voltage and resistance, using appropriate meters in complex circuits. Knowledge of the circuit symbol, function and application of standard electrical and electronic components including cell, battery, lamp, switch, resistor, variable resistor, voltmeter, ammeter, LED, motor, microphone, loudspeaker, photovoltaic cell, fuse, diode, capacitor, thermistor, LDR, relay,	Carry out experiments to confirm the relationships for current and voltage in series and parallel circuits. Construct and investigate a range of series, parallel and combination circuits using ammeters and voltmeters. Investigate the function of the named components in practical circuits, for example the function of a transistor as a switch.	$R_{T} = R_{1} + R_{2} + \dots$ $\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots$	 BBC Knowledge and Learning <u>learner</u> <u>activity</u> – Resistors in series and parallel PhET <u>interactive simulation</u> – Circuit construction kit: d.c. BBC Bitesize <u>learner activity</u> – House wiring BBC Knowledge and Learning <u>quick test</u> – Behind the wall BBC Knowledge and Learning <u>learner</u> <u>activity</u> – Practical electrical and electronic circuits

transistor.	Research and discuss the benefits of a ring circuit over a		BBC Knowledge and Learning guick test –
For transistors, familiarity with the symbols for an npn transistor and	standard parallel circuit.		Practical electrical and electronic circuits
an n-channel enhancement mode MOSFET. Explanation of their	Investigate the effect on the total resistance of a circuit of		Twig <u>video clip</u> – Circuits
function as a switch in transistor switching circuits.	combining resistors in series and in parallel.		Twig <u>video clip</u> – Diodes and transistors
Knowledge of current and voltage relationships in series and parallel circuits.			Walter Fendt <u>learner activity</u> – Combinations of resistors
Use of appropriate relationships to solve problems involving the total resistance of resistors in series and in parallel circuits, and circuits with a combination of series and parallel resistors.			
Electrical power Use an appropriate relationship to solve problems involving energy, power and time.	Measure and compare the power of various electrical devices.	$P = \frac{E}{t}$	BBC Knowledge and Learning <u>learner</u> <u>activity</u> – Electrical power
Use appropriate relationships to solve problems involving power,	Investigate the relationship between power and fuses for	P = IV	BBC Knowledge and Learning <u>quick test</u> – Electrical power
potential difference (voltage), current and resistance in	household appliances.	P = PR	
electrical circuits.	Investigate power loss using model power transmission	$P = \frac{V^2}{R}$	

Selection of an appropriate fuse rating given the power rating of an	lines.	
electrical appliance. (3A fuse for most appliances rated up to	Carry out a survey into household/educational establishment energy consumption.	

Specific heat capacity			
Knowledge that different materials	Heat different masses of		BBC Knowledge and Learning learner
require different quantities of heat	water in similar kettles		activity – Electrical power
to raise the temperature of unit	predicting which will reach	$E_{\rm h} = cm\Delta T$	
mass by one degree Celsius.	boiling point first and explain		BBC Knowledge and Learning learner
	the reasons for this		activity – Specific heat capacity
Knowledge that the temperature	prediction.		
of a substance is a measure of			BBC Knowledge and Learning guick test –
the mean kinetic energy of its	Carry out experiments to		Specific heat capacity
particles.	compare the heat energy		
	stored in different materials of		
Explanation of the connection	the same mass when heated		
between temperature and heat	to the same temperature.		
energy.			
	Research clothing used for		
Use an appropriate relationship to	specialist jobs, for example		
solve problems involving mass,	fire fighter, astronaut and		
heat energy, temperature change	polar explorer.		
and specific heat capacity.			
	Explain why some foods		
Use of the principle of	seem much warmer on the		
conservation of energy to	tongue than others when		
determine heat transfer.	cooked, eg tomatoes in a		
	cheese and tomato toastie.		
			BBC Knowledge and Learning video clip –
	Design a heating system for		Heat energy transfer experiment
	example heat pump, solar-		rieat energy transier experiment
	heat traps, ground-storage		
	systems, etc.		

force per unit area exerted on a surface.gases. $p_1V_1 = p_2V_2$ Twig video clipDescription of how the kinetic model accounts for the pressure of a gas.Investigate the relationship between pressure and force using gas syringe and masses. $p_1V_1 = p_2V_2$ Twig video clip PhET interaction propertiesBBC Knowled	
	<u>e</u> – Pressure and surface area <u>e</u> – Gas laws <u>ve simulation</u> – Gas ge and Learning learner
to solve problems involving pressure, force and area. Because the role of Lord BBC Knowled	laws and the kinetic model ge and Learning <u>quick test</u> – the kinetic model

	limitations of the behaviour of	
Use of appropriate relationships solve problems involving the volume, pressure and kelvin temperature of a fixed mass of gas.	real gases.	

Waves and Radiation		Unit specification: <u>http://bit.ly/1mfAQKu</u>	
Mandatory course key areas	Suggested learning activities	Exemplification of key areas	Useful resources
 Wave parameters and behaviours Knowledge that energy can be transferred as waves. Determination of frequency, period, wavelength, amplitude and wave speed for longitudinal and transverse waves. Use of appropriate relationships to solve problems involving wave speed, frequency, period, wavelength, distance, number of waves and time. Awareness of the practical limitations of demonstrating diffraction. Comparison of long wave and short wave diffraction. 	Identify, measure and calculate frequency, wavelength and speed for sound waves or water waves, eg using data loggers, or echo methods. Use 'slinkies' to demonstrate transverse and longitudinal waves. Investigate the diffraction of waves around objects and through gaps.	Exemplification of key areas v = d/t f=N/t $v = f\lambda$ T = 1/f	Education Scotland Glow NQ portal resources – staff and learner resources (Glow login required) Twig video clip – Echolocation dolphins BBC Knowledge and Learning learner activity – Wave YouTube video clip – Waves BBC Knowledge and Learning video clip – Calculating the speed of light University of Salford interactive simulation – Wave diffraction Virtual Physics interactive simulation – Diffraction of radio waves (courtesy of ©Flash Learning) Falstad learner simulation – Ripple tank

		BBC Knowledge and Learning <u>learnactivity</u> – Wave parameters and be BBC Knowledge and Learning <u>quic</u> Wave parameters and behaviours	haviours
Electromagnetic spectrum Knowledge of the relative frequency and wavelength of bands of the electromagnetic spectrum with reference to typical sources, detectors and applications. Knowledge of the qualitative relationship between the frequency and energy associated with a form of radiation. Knowledge that all radiations in the electromagnetic spectrum travel at the speed of light.	Explore, discuss and compare applications of e-m spectrum beyond the visible. Discuss and compare limitations for applications of e-m waves in relation to frequency.	Twig video clips – The electromage spectrum Twig video clip – What is light? Twig video clip – Colour Twig video clip – Waves in medicin Twig video clip – Waves in medicin Twig video clip – How do mobile phyork? Twig video clip – What makes up the electromagnetic spectrum? SSERC practical activities – UV an experiments BBC Knowledge and Learning learning cuice Electromagnetic spectrum BBC Knowledge and Learning quice Electromagnetic spectrum	ne nones ne nd IR <u>ner</u>

BBC GCSE Bitesize <u>learner activity</u> – The electromagnetic spectrum
WatchKnowLearn <u>learner activity</u> – Electromagnetic spectrum song
BBC Learning Zone <u>video clip</u> – The effects of UV light on our skin
BBC Learning Zone <u>video clip</u> – Infrared: the electromagnetic spectrum
Twig <u>video clip</u> – Infrared snake hunt
NASA <u>learner activity</u> – Cosmic colours
BBC Knowledge and Learning <u>video clip</u> – Waves and communication
Colorado University <u>learner summary</u> – Uses of electromagnetic waves
BBC Knowledge and Learning <u>video clips</u> – Selection on uses of EM waves

refraction, identification of the normal, angle of incidence and angle of refraction.	Investigate the reason for the 'apparent depth' of water. Research practical applications of refraction in medicine and industry.	Twig video clip – The history of the microscope Twig video clip – Manipulating light PhET interactive simulation – Bending light Falstad learner activity – Refraction of water waves BBC Knowledge and Learning learner activity – Light BBC Knowledge and Learning quick test – Light
---	---	---

Nuclear radiation			
Knowledge of the nature of alpha,	Research the extraction of	A=N/t	Twig <u>video clips</u> – Nuclear power
beta and gamma radiation, the	naturally occurring		
relative effect of their ionisation,	radioactive materials.		Twig video clips – Radioactive substances
and their relative penetration.			
Use of an appropriate relationship	Measure background	D = E/m	Twig video clip – Radioactive half-life
to solve problems involving	radiation in a number of		5 <u> </u>
activity, number of nuclear	locations.		Twig video clip – Nuclear fusion
disintegrations and time.		$H = Dw_r$	3
	Research into society's		BBC Knowledge and Learning learner
Knowledge of background	reliance on radioactivity for a	• H	activity – Nuclear radiation
radiation sources.	range of medical and	$\dot{H} = \frac{H}{4}$	
Use of appropriate relationships to	industrial applications,	t	BBC Knowledge and Learning guick test –
solve problems involving absorbed	including energy sources.		Nuclear radiation
dose, equivalent dose, energy,			
mass and radiation weighting	Research annual background		SSERC practical activity - Radioactivity
factor.	radiation in the UK and		when you don't have a source
	effective dose limits for a		when you don't have a source
Comparison of equivalent dose	member of the public and for		PhET interactive simulation – Nuclear
due to a variety of natural and	a radiation worker.		fission
artificial sources.			lission
Awareness of equivalent dose rate	Average annual background		Arizona Stata University enimation
and exposure safety limits for the	radiation in UK: 2.2 mSv		Arizona State University <u>animation</u> –
public and for workers in radiation			Nuclear power station
industries in terms of annual	Annual effective dose limit for		DDO Kasudadaa aad Laamia ayida ayida
effective equivalent dose.	member of the public: 1 mSv		BBC Knowledge and Learning <u>video clips</u> –
			Nuclear radiation
Use of an appropriate relationship	Annual effective dose limit for		
to solve problems involving	radiation worker: 20 mSv		

	1	
equivalent dose rate, equivalent		
dose and time.	Discuss or debate the risks	
	and benefits of radioactivity	
Awareness of applications of	in society.	
	IT Society.	
nuclear radiation.		
	Discuss or debate the	
Definition of half-life	biological effects of radiation.	
Use of graphical or numerical data		
to determine the half-life of a	Research the significance of	
radioactive material.	half-life in medical and	
Tadioactive material.		
	industrial applications.	
Qualitative description of fission		
and fusion, with emphasis on the	Research current	
importance of these processes in	applications and	
the generation of energy.	developments of fission and	
The generation of energy.	•	
	fusion reactions to generate	
	energy.	

Dynamics and Space			Unit specification: <u>http://bit.ly/1eOzrmf</u>
Mandatory course key areas	Suggested learning activities	Exemplification of key areas	Useful resources
 Velocity and displacement – vectors and scalars Definition of vector and scalar quantities. Identification of force, speed, velocity, distance, displacement, acceleration, mass, time and energy as vector or scalar quantities. Calculation of the resultant of two vector quantities in one dimension or at right angles. Determination of displacement and/or distance using scale diagram or calculation. Use of appropriate relationships to solve problems involving velocity, displacement and time. 	Set up an orienteering course in school grounds — calculate displacement and average velocity, distance and average speed. Discuss and compare the difference between vector and scalar quantities. Calculate average speed/velocity using distance/displacement data and time data from a number of contexts, for example athletics, cars, flight, space. Analyse motion vectors using scale diagrams and/or trigonometry.	$\overline{v} = \frac{s}{t}$ $v = \frac{s}{t}$	 Education Scotland Glow NQ portal resources – staff and learner resources (Glow login required) Twig video clip – Speed, velocity and acceleration Twig video clip – Vectors: air traffic control BBC Knowledge and Learning learner activity – Forces, motion and energy Michigan State University interactive simulation – Vector addition University of Arkansas interactive simulation – Vector calculator YouTube video clip – Introduction to vectors and scalars BBC Knowledge and Learning learner activity and quick test – Vectors and scalars

Velocity-time graphs Sketch of velocity-time graphs for objects from recorded or experimental data. Interpretation of velocity-time graph to describe the motion of an object. Determination of displacement from a velocity-time graph.	Plot graphs from data sets — manually or use of software. Capture and analyse data using appropriate software, eg trolleys running down slopes. Observe the v -t graph of bouncing ball using a motion sensor.	<i>s</i> = area under <i>v–t</i> graph.	Walter Fendt <u>interactive simulation</u> – Motion with constant acceleration BBC Knowledge and Learning <u>learner</u> <u>activity</u> – Speed–time graphs BBC Knowledge and Learning <u>quick test</u> – Speed–time graphs
Acceleration Use of an appropriate relationship to solve problems involving acceleration, initial velocity (or speed), final velocity (or speed) and time. Determination of acceleration from a velocity–time graph.	Determine the acceleration of a vehicle using two light gates and timer recording times for instantaneous speeds and time between. Determine acceleration from a velocity-time graph by finding the gradient using data software.	$a = \frac{v - u}{t}$	 BBC Knowledge and Learning learner activity – Velocity and acceleration BBC Knowledge and Learning <u>quick test</u> – Velocity and acceleration SSERC <u>practical activity</u> – Wiimote® physics SSERC <u>practical activity</u> – Loop the loop experiments

Newton's laws			
Application of Newton's laws and	Identify forces in vehicles	F = ma	YouTube video clip – Newton's first law of
balanced forces to explain	travelling with constant velocity,		motion
constant velocity (or speed),	for example car, helicopter or		
making reference to frictional	boat.	W = Fd or	PhET interactive simulation – Forces and
forces.		$E_{w} = Fd$	motion: basics
	Investigate 'frictionless		
Use of an appropriate relationship	movement' using an air hockey		Twig <u>video clip</u> – Terminal velocity
to solve problems involving	puck, linear air-track or model		
unbalanced force, mass and	hovercraft.	W = mg	BBC Knowledge and Learning video clip – A
acceleration for situations where		w = mg	demonstration of friction
more than one force is acting.	Discuss practical examples of		
	balanced forces, for example		PPC Knowledge and Learning video alin
Use of an appropriate relationship	gliding, floating in water or tug		BBC Knowledge and Learning video clip –
to solve problems involving work	of war.		Aerodynamics – reducing air friction
done, unbalanced force and			
distance/displacement.	Investigate Newton's second		BBC Knowledge and Learning video clip –
	law using a linear air track or		Mass and weight
Use of an appropriate relationship	other suitable means.		
to solve problems involving			PhET interactive simulation – Lunar lander
weight, mass and gravitational	Experiment with water rockets.		
field strength, including on			BBC Knowledge and Learning learner
different planets.	Observe lunar landing		activity – Forces and Newton's laws
Knowledge of Newton's second	simulations.		
law including its application to			BBC Knowledge and Learning <u>quick test</u> –
space travel, rocket launch and	Investigate parachutes, for		Forces and Newton's laws
landing.	example by dropping flat and		
	crushed sheet of paper.		YouTube video clip – Crash test with and
Knowledge of Newton's third law			without safety belt

and its application to explain motion resulting from a 'reaction' force. Use of Newton's laws to explain free-fall and terminal velocity.	Demonstrate balanced forces and terminal velocity by dropping ball bearings into glycerine filled measuring cylinders. Relate Newton's laws to car safety measures, for example seatbelts, air bags or crumple zones.		SSERC <u>practical activities</u> – Road safety context for teaching forces BBC Knowledge and Learning <u>video clip</u> – Falling bodies BBC Knowledge and Learning <u>video clips</u> – Forces, motions and energy
 Projectile motion Explanation of projectile motion. Use of appropriate relationships to solve problems involving projectile motion from a horizontal launch, including the use of motiongraphs. Explanation of satellite orbits in terms of projectile motion.	Observe the 'String of pearls' experiment (using a strobe light to see the separation of projectile motion). Observe the 'Monkey and hunter' experiment. Use tracking software to analyse a video recording of projectile motion. Investigate and calculate 'drop time' and 'time of flight'. Discuss Newton's 'thought' experiment.	Area under $v_h - t$ graphs for horizontal range and area under v_V - t graphs for vertical height. $v_h = s/t$ (constant horizontal velocity) $v_V = u + at$ (constant vertical acceleration)	Waowen <u>interactive simulation</u> – Newton's cannon NASA <u>interactive simulation</u> – Newton's cannon Physics Classroom <u>learner resources</u> – Monkey and zookeeper National STEM Centre <u>staff notes</u> – Pearls of water Walter Fendt <u>interactive simulation</u> – Projectile motion BBC Knowledge and Learning <u>video clip</u> – Projectile motion

Space exploration Awareness of evidence supporting current understanding of the universe from telescopes and space exploration. Awareness of the benefits of satellites, for example GPS, weather forecasting, communications and space exploration (Hubble telescope, ISS) Qualitative awareness of the relationship between the altitude of a satellite and its period. Awareness of the potential benefits of space exploration. Awareness of the challenges of space travel, including, for example: Travelling large distances with the	Discuss space exploration (emphasising the idea that this is a continually developing area) using suitable simulations and/or DVDs. View videos of re-entry, for example of Joe Kittinger or Felix Baumgartner. Discuss the need for thermal protection systems to protect spacecraft on re-entry, including qualitative and quantitative specific heat capacity. Design and make a model heat shield for re-entry.	$E_{h} = cm\Delta T$ $E_{h} = ml$ $Ep = mgh$ $Ek = \frac{1}{2}mv^{2}$ $W = Fd \text{ or }$ $E_{w} = Fd$	Ion – capa <u>interactive simulation</u> – Orbit BBC Knowledge and Learning <u>learner</u> <u>activity</u> – Projectile motion BBC Knowledge and Learning <u>quick test</u> – Projectile motion Twig <u>video clip</u> – Mars: dead planet Twig <u>video clip</u> – Mars: the search for water Twig <u>video clip</u> – Mars: the search for water Twig <u>video clip</u> – Big bang Twig <u>video clip</u> – Planet Kevin Twig <u>video clip</u> – Planet Kevin Twig <u>video clip</u> – Kittenger: First man in space? Twig <u>video clip</u> – Man on the moon BBC Knowledge and Learning <u>learner</u> <u>activity</u> – Earth and space NASA <u>learner resources</u> – Orbits r us BBC Knowledge and Learning <u>video clip</u> – Gravitational pull and space travel
---	--	---	--

possible solution of attaining high		NASA interactive simulation – Celestia
velocity by using ion drive		
(producing a small unbalanced		
force over an extended period of		How stuff works learner resource – Apollo's
time) or using a 'catapult' from a		re-entry
fast moving asteroid, moon or		Te-entry
planet.		
Maneuvering a spacecraft in a		Flight global image – Apollo's blackened
zero friction environment,		heat-shield
-		
possibly to dock with the ISS.		YouTube <u>video clip</u> – Meteor hits Russia
Maintaining sufficient energy to		
operate life support systems in a		Educypedia animation – How GPS works
spacecraft with the possible		
solution of using solar cells with		YouTube <u>video clip</u> – Columbia space
area that varies with distance		shuttle break up
from the Sun.		
Awareness of the risks		
associated with manned space		
exploration, for example fuel load		
on takeoff, potential exposure to		
radiation, pressure differential		
and challenges of re-entry to a		
planet's atmosphere.		
Use of an appropriate relationship		
to solve problems involving heat		
energy, mass and specific latent		
heat.		

	[]	1	T 1 1 1 D 1 1
Cosmology			Twig <u>video clip</u> – Planet hunters
Use of the term 'light year' and	Construct a simple		
conversion between light years	spectroscope from a CD disk		Twig <u>video clip</u> – What is a light year?
and metres.	and examine common light		
	sources.		Twig <u>video clips</u> – Earth
Description of the observable			
universe — origin and age of	Use a spectroscope to look at a		Twig <u>video clip</u> – The goldilocks zone
universe.	range of light sources, eg		
	sodium lamp and other gas		Astronomy and Law learner resource –
Awareness of the use of different	discharge lamps.		Astronomical units
parts of the electromagnetic			
spectrum in obtaining information	Research recent advances in		YouTube video clip – Big Bang introduction
about astronomical objects.	astronomy and in our		(staff resource)
	knowledge of the universe.		
Identification of continuous and			NASA image – Line spectra of elements and
line spectra.	View the night sky with a		absorption spectra of sun
	telescope.		
Use of spectral data for known			BBC Knowledge and Learning video clip –
elements, to identify the elements	Discuss how radio telescopes,		Spectroscopy and the composition of stars
present in stars.	the COBE satellite and the		opeolioscopy and the composition of stars
	SETI institute have advanced		BBC Learning Zone video clip – Dark matter
	our knowledge of the universe.		and gravity
			and gravity
			Sloop Digital Sky Sarvar staff resources
			Sloan Digital Sky Server <u>staff resources</u> – Background on developments of knowledge
			of universe
			Hubble site images From the Hubble
			Hubble site images – From the Hubble
			space telescope

	BBC Knowledge and Learning <u>learner</u> activity – Space exploration and cosmology
	BBC Knowledge and Learning <u>quick test</u> – Space exploration and cosmology